SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography

نویسندگان

  • Robert E. Smith
  • Jacques-Donald Tournier
  • Fernando Calamante
  • Alan Connelly
چکیده

Diffusion MRI streamlines tractography allows for the investigation of the brain white matter pathways non-invasively. However a fundamental limitation of this technology is its non-quantitative nature, i.e. the density of reconstructed connections is not reflective of the density of underlying white matter fibres. As a solution to this problem, we have previously published the "spherical-deconvolution informed filtering of tractograms (SIFT)" method, which determines a subset of the streamlines reconstruction such that the streamlines densities throughout the white matter are as close as possible to fibre densities estimated using the spherical deconvolution diffusion model; this permits the use of streamline count as a valid biological marker of connection density. Particular aspects of its performance may have however limited its uptake in the diffusion MRI research community. Here we present an alternative to this method, entitled SIFT2, which provides a more logically direct and computationally efficient solution to the streamlines connectivity quantification problem: by determining an appropriate cross-sectional area multiplier for each streamline rather than removing streamlines altogether, biologically accurate measures of fibre connectivity are obtained whilst making use of the complete streamlines reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AxTract: Toward microstructure informed tractography.

Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the resulting streamlines and the underlying white matter...

متن کامل

Towards quantitative connectivity analysis: reducing tractography biases

Diffusion MRI tractography is often used to estimate structural connections between brain areas and there is a fast-growing interest in quantifying these connections based on their position, shape, size and length. However, a portion of the connections reconstructed with tractography is biased by their position, shape, size and length. Thus, connections reconstructed are not equally distributed...

متن کامل

A Symmetry-Based Method to Infer Structural Brain Networks from Probabilistic Tractography Data

Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The p...

متن کامل

Fiber up‐sampling and quality assessment of tractograms – towards quantitative brain connectivity

BACKGROUND AND PURPOSE Diffusion MRI tractography enables to investigate white matter pathways noninvasively by reconstructing estimated fiber pathways. However, such tractograms remain biased and nonquantitative. Several techniques have been proposed to reestablish the link between tractography and tissue microstructure by modeling the diffusion signal or fiber orientation distribution (FOD) w...

متن کامل

Structural connectivity changes in temporal lobe epilepsy: Spatial features contribute more than topological measures

BACKGROUND Previous studies reported reduced volumes of many brain regions for temporal lobe epilepsy (TLE). It has also been suggested that there may be widespread changes in network features of TLE patients. It is not fully understood, however, how these two observations are related. METHODS Using magnetic resonance imaging data, we perform parcellation of the brains of 22 patients with lef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2015